Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
ACS Appl Mater Interfaces ; 16(15): 19094-19102, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38571376

RESUMEN

Due to the spontaneous transport of small-sized cations and redox reactions under open circuit conditions, the currently reported coloring electrochromic devices (ECDs) may self-bleach easily. The resulting ECDs exhibit poor open-circuit memory, which limits their applications in static display advertisement. By constructing energy barriers to effectively control small-sized cation transport, the redox reaction could be suppressed, thereby inhibiting the self-bleaching of ECDs. In this study, phosphate glass is used as an electrolyte to construct high-energy barriers. Sodium ions in phosphate glass absorb external heat to cross energy barriers and become conductive charge carriers. In this case, the electrochromism of ECDs is allowed. On the contrary, after the absorbed heat energy is released, sodium ions are immediately trapped by oxygen ions in the PO4 unit, becoming frozen ions. At this point, the electrochromization of ECDs is prohibited. Based on the ionic conductive feature of phosphate glass, ECDs absorb heat and are colored by applying an electric field first. Then, ECDs release the thermal energy and the sodium ions transport in the electrolyte is blocked to cut off the self-bleaching pathway. The prepared inorganic all-solid-state ECDs maintained the colored state for several months using the method mentioned above, which solved the problem of the poor open-circuit memory of ECDs.

2.
Arch Biochem Biophys ; 753: 109912, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325773

RESUMEN

Hypertrophic scar (HS) is a dermatological condition characterized by an excessive accumulation of proteins in the extracellular matrix (ECM) and an elevated cell count. The development of HS is thought to be linked to the disruption of dermal fibroblast proliferation and apoptosis. The processes of cell proliferation and apoptosis are notably influenced by PTEN. However, the precise mechanisms by which PTEN regulates hypertrophic scar fibroblasts (HSFs) and its overall role in scar formation are still not fully understood. The objective of this study was to investigate the influence of PTEN on hypertrophic scars(HS) and its function in the regulation of scar formation, with the aim of identifying a pivotal molecular target for scar treatment. Our results demonstrate that the overexpression of PTEN (AdPTEN) significantly suppressed the expression of type I collagen (Col I), type III collagen (Col III), and alpha smooth muscle actin (α-SMA) in HSFs. Furthermore, it was observed that the introduction of AdPTEN resulted in the suppression of Bcl-xL expression, which consequently led to an increase in the apoptosis of HSFs. Similarly, in the inhibition of collagens expression and subsequent increase in HSF apoptosis were also observed upon silencing Bcl-xL (sibcl-xL). Additionally, the in vitro model demonstrated that both AdPTEN and sibcl-xL were effective in reducing the contraction of FPCL. The findings of our study provide validation for the role of PTEN in inhibiting the development of hypertrophic scars (HS) by modulating the expression of extracellular matrix (ECM) proteins and promoting apoptosis in hypertrophic scar fibroblasts (HSFs) via Bcl-xL. These results indicate that PTEN and Bcl-xL may hold promise as potential molecular targets for therapeutic interventions aimed at managing hypertrophic scars.


Asunto(s)
Cicatriz Hipertrófica , Humanos , Apoptosis , Cicatriz Hipertrófica/metabolismo , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fosfohidrolasa PTEN/metabolismo
3.
ACS Appl Mater Interfaces ; 16(1): 1251-1258, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38129975

RESUMEN

The distinctive characteristics of blue quantum dots (QDs) such as their deep valence band and large bandgap give rise to an elevated hole injection barrier between the hole transport layers (HTLs) and the QD active layer. This results in an imbalance of carrier transport and injection across the device, leading to a degrading performance in QD light-emitting diodes (QLEDs). In this paper, high-efficiency and low-efficiency degradation blue CdSe/CdS/ZnS QLEDs were fabricated by using the Lewis base, 1,2-bis(diphenylphosphino)ethane (DPPE), blended with poly(9-vinylcarbazole) (PVK) (DPPE:PVK) as HTLs. The device performance of blue QLEDs can be finely adjusted by manipulating the blending ratio between DPPE and PVK. When 4 wt % DPPE was blended with PVK (4 wt % DPPE:PVK) as the HTL, the device achieved its optimal performance. Compared to the device with neat PVK as the HTL, the turn-on voltage of blue QLEDs with the 4 wt % DPPE:PVK HTL is reduced from 3.21 to 2.9 V. The maximum current efficiency (CE) and external quantum efficiency (EQE) of blue QLEDs increase from 2.92 cd A-1 and 5.89% in neat PVK to 5.75 cd A-1 and 11.75% for the 4 wt % DPPE:PVK HTL. Furthermore, the QLEDs incorporating DPPE:PVK HTLs exhibited exceptional resistance to efficiency degradation (EQE = 8.83%@L = 12,000 cd m-2 for 4 wt % DPPE:PVK as the HTL and EQE = 2.80%@L = 12,000 cd m-2 for neat PVK as the HTL). A more in-depth analysis reveals that enhanced device performance results from the chelating and bridging effect of the bidentate ligand Lewis base DPPE. These effects strengthen the binding of free metal ions in the blue QDs, reduce the charge barriers, enhance the contact between the HTLs and the QD active layer, and ultimately improve hole injection.

4.
Burns Trauma ; 11: tkad034, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908562

RESUMEN

Background: Non-healing wounds are an intractable problem of major clinical relevance. Evidence has shown that dermal papilla cells (DPCs) may regulate the wound-healing process by secreting extracellular vesicles (EVs). However, low isolation efficiency and restricted cell viability hinder the applications of DPC-EVs in wound healing. In this study, we aimed to develop novel 3D-DPC spheroids (tdDPCs) based on self-feeder 3D culture and to evaluate the roles of tdDPC-EVs in stimulating angiogenesis and skin wound healing. Methods: To address the current limitations of DPC-EVs, we previously developed a self-feeder 3D culture method to construct tdDPCs. DPCs and tdDPCs were identified using immunofluorescence staining and flow cytometry. Subsequently, we extracted EVs from the cells and compared the effects of DPC-EVs and tdDPC-EVs on human umbilical vein endothelial cells (HUVECs) in vitro using immunofluorescence staining, a scratch-wound assay and a Transwell assay. We simultaneously established a murine model of full-thickness skin injury and evaluated the effects of DPC-EVs and tdDPC-EVs on wound-healing efficiency in vivo using laser Doppler, as well as hematoxylin and eosin, Masson, CD31 and α-SMA staining. To elucidate the underlying mechanism, we conducted RNA sequencing (RNA-seq) of tdDPC-EV- and phosphate-buffered saline-treated HUVECs. To validate the RNA-seq data, we constructed knockdown and overexpression vectors of Krüppel-like factor 4 (KLF4). Western blotting, a scratch-wound assay, a Transwell assay and a tubule-formation test were performed to detect the protein expression, cell migration and lumen-formation ability of KLF4 and vascular endothelial growth factor A (VEGFA) in HUVECs incubated with tdDPC-EVs after KLF4 knockdown or overexpression. Dual-luciferase reporter gene assays were conducted to verify the activation effect of KLF4 on VEGFA. Results: We successfully cultured tdDPCs and extracted EVs from DPCs and tdDPCs. The tdDPC-EVs significantly promoted the proliferation, lumen formation and migration of HUVECs. Unlike DPC-EVs, tdDPC-EVs exhibited significant advantages in terms of promoting angiogenesis, accelerating wound healing and enhancing wound-healing efficiency both in vitro and in vivo. Bioinformatics analysis and further functional experiments verified that the tdDPC-EV-regulated KLF4/VEGFA axis is pivotal in accelerating wound healing. Conclusions: 3D cultivation can be utilized as an innovative optimization strategy to effectively develop DPC-derived EVs for the treatment of skin wounds. tdDPC-EVs significantly enhance wound healing via KLF4/VEGFA-driven angiogenesis.

5.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(10): 878-883, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-37882710

RESUMEN

Objective To investigate the role of proanthocyanidins (PC) in lipopolysaccharide (LPS)-induced inflammatory response and its possible mechanism in RAW264.7 macrophages. Methods RAW264.7 macrophages were cultured and treated with PBS and different concentrations of PC for 24 hours, followed by 1 µg/mL LPS for 6 hours. Real-time PCR was used to detect the mRNA expression of interleukin1ß (IL-1ß), IL-6, monocyte chemoattractant protein 1 (MCP-1), tumor necrotic factor α (TNF-α), IL-4 and arginase 1 (Arg1) in RAW264.7 macrophages. Flow cytometry was used to detect the effects of PBS group, LPS group and PC combined with LPS group on M1 and M2 polarization of macrophages. The protein expressions of silenced information regulator 1 (SIRT1), nuclear factor kappa B p65(NF-κB p65) and acetylated NF-κB p65 (Ace-p65) were detected by Western blot analysis after different concentrations of PC treatment. Co-immunoprecipitation assay was used to detect the binding effect of SIRT1 to NF-κB p65 in macrophages treated with PC. Results Compared with PBS group, the mRNA expression of macrophage pro-inflammatory cytokines IL-1ß, IL-6, MCP-1 and TNF-α decreased and the mRNA expression of anti-inflammatory factors IL-4 and Arg1 increased in PC group. Compared with LPS group, PC combined with LPS group could significantly inhibit M1 polarization and promote M2 polarization of macrophages. With the increase of PC concentration, the expression of SIRT1 was up-regulated, and NF-κB p65 protein did not change significantly. The expression of Ace-p65 protein decreased significantly when treated with high concentration of PC. Conclusion PC can significantly alleviate the LPS-induced inflammatory response by up-regulating the expression of SIRT1 and inhibiting NF-κB pathway in RAW264.7 macrophages.


Asunto(s)
FN-kappa B , Proantocianidinas , Animales , Ratones , Interleucina-4 , Interleucina-6 , Lipopolisacáridos , Macrófagos , ARN Mensajero , Sirtuina 1/genética , Factor de Necrosis Tumoral alfa , Células RAW 264.7
6.
Redox Biol ; 62: 102655, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36913799

RESUMEN

BACKGROUND: Sepsis is a fatal disease with a high rate of morbidity and mortality, during which acute lung injury is the earliest and most serious complication. Injury of pulmonary microvascular endothelial cells (PMVECs) induced by excessive inflammation plays an important role in sepsis acute lung injury. This study is meant to explore the protective effect and mechanism of ADSCs exosomes on excessive inflammation PMVECs injury. RESULTS: We successfully isolated ADSCs exosomes, the characteristic of which were confirmed. ADSCs exosomes reduced excessive inflammatory response induced ROS accumulation and cell injury in PMVECs. Besides, ADSCs exosomes inhibited excessive inflammatory response induced ferroptosis while upregulated expression of GPX4 in PMVECs. And further GPX4 inhibition experiments revealed that ADSCs exosomes alleviated inflammatory response induced ferroptosis via upregulating GPX4. Meanwhile, ADSCs exosomes could increase the expression and nucleus translocation of Nrf2, while decrease the expression of Keap1. miRNA analysis and further inhibition experiments verified that specific delivery of miR-125b-5p by ADSCs exosomes inhibited Keap1 and alleviated ferroptosis. In CLP induced sepsis model, ADSCs exosomes could relieve the lung tissue injury and reduced the death rate. Besides, ADSCs exosomes alleviated oxidative stress injury and ferroptosis of lung tissue, while remarkably increase expression of Nrf2 and GPX4. CONCLUSION: Collectively, we illustrated a novel potentially therapeutic mechanism that miR-125b-5p in ADSCs exosomes could alleviate the inflammation induced PMVECs ferroptosis in sepsis induced acute lung injury via regulating Keap1/Nrf2/GPX4 expression, hence improve the acute lung injury in sepsis.


Asunto(s)
Lesión Pulmonar Aguda , Exosomas , Ferroptosis , MicroARNs , Sepsis , Humanos , Lesión Pulmonar Aguda/genética , Células Endoteliales/metabolismo , Exosomas/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Pulmón/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Sepsis/metabolismo , Células Madre/metabolismo
7.
Ann Transl Med ; 10(22): 1253, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36544629

RESUMEN

Background: The combined use of various flap techniques has rapidly improved the reconstruction quality of auricle defects that are complicated by a scarcity of periauricular skin after severe burns. Nevertheless, there is still no preferable method when the optimal alternative skin to cover the auricular framework is unavailable and the periauricular vascular network is devastated. Case Description: Copious scars were observed in the periauricular region, neck, forearm, and supraclavicular region of a 19-year-old man. He had been burned by high-voltage electricity and exhibited a right auricular defect. We innovatively created a prefabricated expanded island flap constructed with an anastomosed vascular pedicle buried in the anterior thoracic chest, followed by flap transfer, tissue re-expansion, and sculpted autologous costal cartilage implantation. The remnant ear was successfully reconstructed in a three-stage surgical procedure. Conclusions: All the flaps survived well without any complications. The reconstructed right ear had a natural shape and a clear structure without apparent displacement and deformation during follow-up. The patient was satisfied with the final appearance, and his neck mobility markedly improved. Advantages and disadvantages were discussed. This procedure explored a novel solution to construct an auricular framework covering for patients who do not have high-quality donor skin and lack anastomotic vessels in the recipient area.

8.
Front Immunol ; 13: 1008195, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36268034

RESUMEN

Background: Gastric cancer (GC) is one of the most malignant and lethal cancers worldwide. Multiple microRNAs (miRNAs) have been identified as key regulators in the progression of GC. However, the underlying pathogenesis that miRNAs govern GC malignancy remains uncertain. Here, we identified a novel miR-585-5p as a key regulator in GC development. Methods: The expression of miR-585-5p in the context of GC tissue was detected by in situ hybridization for GC tissue microarray and assessed by H-scoring. The gain- and loss-of-function analyses comprised of Cell Counting Kit-8 assay and Transwell invasion and migration assay. The expression of downstream microphthalmia-associated transcription factor (MITF), cyclic AMP-responsive element-binding protein 1 (CREB1) and mitogen-activated protein kinase 1 (MAPK1) were examined by Immunohistochemistry, quantitative real-time PCR and western blot. The direct regulation between miR-585-5p and MITF/CREB1/MAPK1 were predicted by bioinformatic analysis and screened by luciferase reporter assay. The direct transcriptional activation of CREB1 on MITF was verified by luciferase reporter assay, chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assays (EMSAs). The interaction between MAPK1 and MITF was confirmed by co-immunoprecipitation (Co-IP) and immunofluorescent double-labelled staining. Results: MiR-585-5p is progressively downregulated in GC tissues and low miR-585-5p levels were strongly associated with poor clinical outcomes. Further gain- and loss-of-function analyses showed that miR-585-5p possesses strong anti-proliferative and anti-metastatic capacities in GC. Follow-up studies indicated that miR-585-5p targets the downstream molecules CREB1 and MAPK1 to regulate the transcriptional and post-translational regulation of MITF, respectively, thus controlling its expression and cancer-promoting activity. MiR-585-5p directly and negatively regulates MITF together with CREB1 and MAPK1. According to bioinformatic analysis, promotor reporter gene assays, ChIP and EMSAs, CREB1 binds to the promotor region to enhance transcriptional expression of MITF. Co-IP and immunofluorescent double-labelled staining confirmed interaction between MAPK1 and MITF. Protein immunoprecipitation revealed that MAPK1 enhances MITF activity via phosphorylation (Ser73). MiR-585-5p can not only inhibit MITF expression directly, but also hinder MITF expression and pro-cancerous activity in a CREB1-/MAPK1-dependent manner indirectly. Conclusions: In conclusion, this study uncovered miR-585-5p impedes gastric cancer proliferation and metastasis by orchestrating the interactions among CREB1, MAPK1 and MITF.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , AMP Cíclico , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Factor de Transcripción Asociado a Microftalmía/genética , MicroARNs/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Neoplasias Gástricas/patología
9.
Sci Total Environ ; 853: 158463, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36087666

RESUMEN

Suspended sediment concentration (SSC) is a crucial indicator for coastal health and geomorphological evolution, featured by complex periodic processes on multiple timescales in response to different cyclic forcing factors. Although remote sensing has functioned as an important means for SSC estimation with sufficient spatio-temporal coverage, the low effective sampling rates and resulting unevenly spaced characteristics of the retrieved time series would hamper the extraction of the representative SSC portrayal (amplitude and phase) on multiple timescales, especially for low-resolution satellites. Here, we retrieved a 9-year hourly GOCI SSC time series (January 2012 to December 2020) at two coastal sites in China (Haimen and Haizhou Bay) as reference cases, and utilized them to obtain MODIS, Sentinel and Landsat sequences with average temporal resolutions of 0.5, 5.6 and 11.2 days as preliminary investigations into amplitude and phase extractions. Furthermore, we generated GOCI-based hypothetical satellite time series with temporal resolutions ranging from 1 to 16 days (1088 subsets) and their mutual combination (591,328 subsets) to explore general laws when extracting amplitudes and phases from satellites with different temporal resolutions by application of the Lomb-Scargle Periodogram and phase-folded diagram methods. The amplitude and phase deviations were found to increase with decreasing temporal resolution on seasonal and fortnightly timescales at Haimen and in Haizhou Bay, while by mutual combination of satellites the errors could be reduced as more data were utilized for the extraction. It is shown that larger amplitude and phase deviations occur on the seasonal timescale in comparison to the fortnightly timescale at Haimen, whereas the situation reverses in the case of Haizhou Bay. These results demonstrate that temporal resolution, data characteristics on the target timescale and absolute SSC amplitude codetermine the extraction accuracy. This further indicates that satellites with lower temporal resolutions can potentially be used on a global scale for extracting the feature changes of multi-period SSC variations, in particular as continuous improvements in data quantity and quality can be expected in the future.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Monitoreo del Ambiente/métodos , China
10.
Int J Biol Sci ; 18(8): 3324-3336, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35637963

RESUMEN

Background: Hypertrophic scars (HS) often occur after burns, surgery and extensive trauma. Krüppel-like factor 4 (KLF4) is a member of the Krüppel-like factor family, a group of conserved zinc finger transcription factors that regulate diverse cellular processes. KLF4 can participate in the regulation of fibrotic diseases in many organs, such as the lung, liver, and heart. However, the antifibrotic effect of KLF4 in skin HS remains elusive. Result: This study observed the inhibition of KLF4 on fibrosis in vivo and in vitro. Our results revealed that KLF4 expression was decreased in HS tissue and fibroblasts. The results of KLF4 transfection confirmed its ability to alleviate the transdifferentiation of fibroblasts into myofibroblasts both in vitro and in vivo, thereby inhibiting the development of fibrosis. In addition, ChIP assays showed that BMP4 was the target gene of KLF4 for inhibiting skin fibrosis. Conclusions: Collectively, this evidence indicates that KLF4 is associated with BMP4 and could play an important regulatory role in HS formation by downregulating myofibroblast transdifferentiation. Our study provides a new target for the prevention and treatment of hypertrophic scars.


Asunto(s)
Proteína Morfogenética Ósea 4 , Cicatriz Hipertrófica , Factor 4 Similar a Kruppel , Proteína Morfogenética Ósea 4/genética , Cicatriz Hipertrófica/genética , Cicatriz Hipertrófica/patología , Fibroblastos/metabolismo , Fibrosis , Humanos , Factor 4 Similar a Kruppel/genética
11.
Front Immunol ; 13: 831168, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359990

RESUMEN

The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD+-dependent deacetylase belonging to the sirtuin family, is a post-translational regulator that plays a role in modulating inflammation. SIRT1 affects multiple biological processes by deacetylating a variety of proteins including histones and non-histone proteins. Recent studies have revealed intimate links between SIRT1 and inflammation, while alterations to SIRT1 expression and activity have been linked to inflammatory diseases. In this review, we summarize the mechanisms that regulate SIRT1 expression, including upstream activators and suppressors that operate on the transcriptional and post-transcriptional levels. We also summarize factors that influence SIRT1 activity including the NAD+/NADH ratio, SIRT1 binding partners, and post-translational modifications. Furthermore, we underscore the role of SIRT1 in the development of inflammation by commenting on the proteins that are targeted for deacetylation by SIRT1. Finally, we highlight the potential for SIRT1-based therapeutics for inflammatory diseases.


Asunto(s)
Sirtuina 1 , Sirtuinas , Histonas/metabolismo , Humanos , Inflamación/metabolismo , NAD/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Sirtuinas/metabolismo
12.
Polymers (Basel) ; 13(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201338

RESUMEN

The effect of counterions on interactions among spherical polyelectrolyte brushes (SPBs) was systematically investigated by rheology, small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). The SPB particles consist of a solid polystyrene (PS) core with a diameter of ca.100 nm and a chemically grafted poly-(acrylic acid) (PAA) brush layer. Metal ions of different valences (Na+, Mg2+ and Al3+) were used as counterions to study the interactions among concentrated SPBs. The so-called "structure factor peak" in SAXS, the "local ordered structure peak" in WAXS and rheological properties indicated the interactions among concentrated SPBs. Combining SAXS, WAXS and rheology, the formation mechanism of the local ordered structure among PAA chains in the overlapped area of adjacent SPB, which was generated due to the bridge function of counterions, was confirmed. In contrast, excessive counterions shielded the electrostatic interaction among PAA chains and destroyed the local ordered structure. This work enriches our understanding of the polyelectrolyte assembly in concentrated SPBs under the effect of counterions and lays the foundations for SPB applications.

13.
Langmuir ; 37(21): 6388-6396, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34008987

RESUMEN

By combining small-angle X-ray scattering, wide-angle X-ray scattering, and rheology, the effect of additional polyelectrolyte chains on interactions among spherical polyelectrolyte brushes (SPB) was systematically investigated both on microscopic and macroscopic levels. The negatively charged poly(acrylic acid) (PAA) chains and positively charged poly(dimethyl diallyl ammonium chloride) (PDDA) chains were used as additional polyelectrolyte chains to investigate the local ordered structure and the "polyelectrolyte peak" among SPB. Interestingly, coacervation appeared in the SPB emulsion while introducing additional free polyelectrolyte chains. The addition of excess positively charged PDDA chains would lead to the transformation of the SPB emulsion from the coacervation to the aggregation, while it has not been observed in the case of PAA chains. Moreover, it was further confirmed that the specific local ordered structure was caused by the electrostatic interaction among polyelectrolyte chains of adjacent SPB. This work could enrich our understanding of polyelectrolyte assembly in concentrated SPB, thereby greatly broadening the application fields of SPB.

15.
Nanomaterials (Basel) ; 10(4)2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326263

RESUMEN

Integrating hollow silica spheres with metal nanoparticles to fabricate multifunctional hybrid materials has attracted increasing attention in catalysis, detection, and drug delivery. Here, we report a simple and general method to prepare hollow silica spheres encapsulating silver nanoparticles (Ag@SiO2) based on spherical polyelectrolyte brushes (SPB), which consist of a polystyrene core and densely grafted poly (acrylic acid) (PAA) chains. SPB were firstly used as nanoreactors to generate silver nanoparticles in situ and then used as sacrificial templates to prepare hybrid hollow silica spheres. The resulted Ag@SiO2 composites exhibit high catalytic activity and good reusability for the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. More importantly, this developed approach can be extended to the encapsulation of other metal nanoparticles such as gold nanoparticles into the hollow silica spheres. This work demonstrates that SPB are promising candidates for the preparation of hollow spheres with encapsulated metal nanoparticles and the resulted hybrid spheres show great potential applications in catalysis.

16.
Chem Commun (Camb) ; 56(32): 4448-4451, 2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-32196039

RESUMEN

This work reports a significant effect of porous structures on the electrocatalytic methanol oxidation performances of Rh-based catalysts. It is demonstrated that a three-dimensional net-like mesoporous structure with ultrathin subunits is beneficial to exposing more active sites and boosting electron transfer inside particles, thus presenting the highest activity.

17.
Langmuir ; 36(12): 3104-3110, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32176504

RESUMEN

Interaction among concentrated spherical polyelectrolyte brushes (SPB) dispersions in water was systematically investigated by means of small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS), and rheological methods. SPB consist of a core of polystyrene (PS) and a poly(acrylic acid) (PAA) brush shell. The "polyelectrolyte peak" appeared in SAXS spectra and was observed in WAXS curves for the first time. The size of the polyelectrolyte peak and the rheological properties of SPB were found to be strongly effected by SPB concentration, pH, and ionic strength. Combined with SAXS, WAXS, and rheological results, it is confirmed that the polyelectrolyte peak is originated from local ordered structures of polyelectrolyte chains bridged by counterions in the overlapping area among SPB driven by electrostatic interactions.

18.
J Matern Fetal Neonatal Med ; 33(23): 4010-4015, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30917714

RESUMEN

Objectives: To investigate factors associated with obtaining results on repeat cell-free DNA testing for fetal trisomy after an initial sample with insufficient fetal fraction.Methods: A series of clinical laboratory samples was queried to identify patients with multiple samples drawn for the Harmony® prenatal test. Maternal demographics, gestational age, timing of sampling, and repeat test outcome were reviewed. Multivariate logistic regression analysis was used to determine the odds ratio of obtaining a result.Results: Two thousand nine hundred six unique pregnancies were identified with a sample submitted for repeat testing after an initial test with an insufficient fetal fraction. Overall, 53% obtained a result on the second draw. The odds of obtaining a result were associated with interval time between draws (per day, OR 1.040, 95% CI 1.031-1.051) and maternal weight (per kg, OR 0.988, 95% CI 0.985-0.991) but not maternal age, gestational age at initial draw, IVF status, or twin versus singleton pregnancy.Conclusions: The probability of obtaining a result with repeat cell-free DNA testing decreases with higher maternal weight and increases with the interval between draws. Waiting longer before collecting a repeat sample increases the probability of obtaining a result but should be considered in the context of the gestational age of the pregnancy and the clinical indication for testing.

19.
ACG Case Rep J ; 6(4): e00056, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31616737

RESUMEN

There are limited data on the natural history of Crohn's disease (CD) in the presence of human immunodeficiency virus infection and the safety of available treatments. We report a patient with CD who presented with pneumocystis pneumonia secondary to newly diagnosed acquired immunodeficiency syndrome. One month before his admission, his gastrointestinal symptoms were well controlled without treatment but gradually reappeared after antiretroviral therapy was initiated. Clinical remission was achieved with vedolizumab treatment. We review the management challenges of CD in a patient with human immunodeficiency virus and describe the unique mechanism of anti-α4ß7 integrin therapy in this setting.

20.
Nanoscale ; 11(29): 13968-13976, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31305840

RESUMEN

Catalysts with high efficiency for the oxygen reduction reaction (ORR) play a vital important role in fuel cells and metal-air batteries. Herein, Ru nanoparticles are highly dispersed on functional multi-walled carbon nanotubes (MWCNTs) by a facile impregnation-reduction method. The particle sizes of Ru nanoparticles are simply and effectively adjusted by the concentration of the Ru precursor. Benefiting from the optimal Ru particle size (2.1 nm), a large electrochemically active surface area and fast electron transport, the Ru/MWCNT catalyst shows outstanding ORR activity and durability via a four-electron pathway, producing a diffusion-limited current density of 4.7 mA cm-2 with a half-wave potential of 0.72 V (vs. RHE). Such performance is better than that of a commercial 10 wt% Pt/C catalyst. Density functional theory calculation results reveal that the Oads adsorption on the surface of Ru increases gradually with the addition of the RuOx layer. The Ru/MWCNT catalyst with a particle size of 2.1 nm features appropriate Oads adsorption energy due to the formation of an optimal RuOx/Ru interface for the facilitation of the ORR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...